Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
Elife ; 132024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639482

ABSTRACT

Despite rapid evolution across eutherian mammals, the X-linked MIR-506 family miRNAs are located in a region flanked by two highly conserved protein-coding genes (SLITRK2 and FMR1) on the X chromosome. Intriguingly, these miRNAs are predominantly expressed in the testis, suggesting a potential role in spermatogenesis and male fertility. Here, we report that the X-linked MIR-506 family miRNAs were derived from the MER91C DNA transposons. Selective inactivation of individual miRNAs or clusters caused no discernible defects, but simultaneous ablation of five clusters containing 19 members of the MIR-506 family led to reduced male fertility in mice. Despite normal sperm counts, motility, and morphology, the KO sperm were less competitive than wild-type sperm when subjected to a polyandrous mating scheme. Transcriptomic and bioinformatic analyses revealed that these X-linked MIR-506 family miRNAs, in addition to targeting a set of conserved genes, have more targets that are critical for spermatogenesis and embryonic development during evolution. Our data suggest that the MIR-506 family miRNAs function to enhance sperm competitiveness and reproductive fitness of the male by finetuning gene expression during spermatogenesis.


Subject(s)
MicroRNAs , Semen , Male , Animals , Mice , Semen/metabolism , Spermatogenesis/genetics , Spermatozoa/metabolism , Testis/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Mammals/genetics
2.
Micromachines (Basel) ; 15(4)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38675350

ABSTRACT

This study presents a numerical simulation-based investigation of a MEMS (micro-electromechanical systems)technology-based deformable mirror employing a piezoelectric film for fundus examination in adaptive optics. Compared to the classical equal-area electrode arrangement model, we optimize the electrode array for higher-order aberrations. The optimized model centralizes electrodes around the mirror center, which realizes low-voltage driving with high-accuracy correction. The optimized models exhibited commendable correction abilities, achieving a unidirectional displacement of 5.74 µm with a driven voltage of 15 V. The voltage-displacement relationship demonstrated high linearity at 0.99. Furthermore, the deformable mirror's influence matrix was computed, aligning with the Zernike standard surface shape of the order 1-3. To quantify aberration correction capabilities, fitting residuals for both models were calculated. The results indicate an average removal of 96.8% of aberrations to the human eye. This underscores that the optimized model outperforms the classical model in correcting high-order aberrations.

3.
Inorg Chem ; 63(8): 3992-3999, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38359906

ABSTRACT

The thermodynamically stable 2H-phase MoS2 is a brilliant material toward hydrogen evolution reaction (HER) owing to its excellent Gibbs free energy of hydrogen adsorption. Nevertheless, the poor intrinsic properties of 2H-MoS2 limit its electrocatalytic performances toward HER. In this work, graphitic carbon nitride covalently bridging 2H-MoS2 (MoS2/GCN) is proposed to construct robust HER electrocatalysts. The strong π-p electron coupling between the delocalized π electrons of GCN and the localized p electrons of S atoms sufficiently expose active sites and accelerate the reaction kinetics. To be specific, MoS2/GCN exhibits remarkable HER activity (160 mV at 10 mA·cm-2) and long-term durability. Importantly, MoS2/GCN also provides great potential for industrial application. Density functional theory (DFT) calculations disclose that the π-p electron coupling at the MoS2/GCN interface regulates the electronic structure of S atoms, consequently providing enhanced HER performance. This work presents a feasible pathway to develop advanced electrocatalysts for energy conversions.

4.
bioRxiv ; 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-37398484

ABSTRACT

Despite rapid evolution across eutherian mammals, the X-linked miR-506 family miRNAs are located in a region flanked by two highly conserved protein-coding genes (Slitrk2 and Fmr1) on the X chromosome. Intriguingly, these miRNAs are predominantly expressed in the testis, suggesting a potential role in spermatogenesis and male fertility. Here, we report that the X-linked miR-506 family miRNAs were derived from the MER91C DNA transposons. Selective inactivation of individual miRNAs or clusters caused no discernable defects, but simultaneous ablation of five clusters containing nineteen members of the miR-506 family led to reduced male fertility in mice. Despite normal sperm counts, motility and morphology, the KO sperm were less competitive than wild-type sperm when subjected to a polyandrous mating scheme. Transcriptomic and bioinformatic analyses revealed that these X-linked miR-506 family miRNAs, in addition to targeting a set of conserved genes, have more targets that are critical for spermatogenesis and embryonic development during evolution. Our data suggest that the miR-506 family miRNAs function to enhance sperm competitiveness and reproductive fitness of the male by finetuning gene expression during spermatogenesis.

5.
Cell Oncol (Dordr) ; 47(1): 175-188, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37612583

ABSTRACT

PURPOSE: Hepatocellular carcinoma (HCC) responds poorly to immunotherapy, and the durable response rate is 10-20%. Here, we aim to characterize HCC classifications based on lactate genes to identify patients who may benefit from immunotherapy. METHODS: Lactate-related genes were applied for HCC classification in the current study, and lactate Cluster 1 (LC1) and lactate Cluster 2 (LC2) were defined. Differential genes from LC1 and LC2 helped define the following lactate phenotype clusters: lactate phenotype Cluster 1 (LPC1), lactate phenotype Cluster 2 (LPC2) and lactate phenotype Cluster 3 (LPC3). Based on the cluster annotation, the lactate score was defined and analyzed to evaluate the immunotherapy response. RESULTS: All the classified clusters were analyzed, and they showed different immune signatures. The survival rate of LPC3 was higher than that of LPC2 (LPC3 vs. LPC2, P = 0.027) and LPC1 (LPC3 vs. LPC1, P = 0.027). Then, the lactate score was annotated and confirmed to be effective in predicting responses to immune checkpoint blockade therapy. CONCLUSION: In the current study, we developed a classification system for HCC and defined the lactate score, which was validated to be partially effective in estimating responses among tumor patients.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Lactic Acid , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy
6.
BMC Emerg Med ; 23(1): 146, 2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38104084

ABSTRACT

BACKGROUND: Implementing training programs to educate patients on the prodromal symptoms of acute coronary syndrome (ACS) may assist patients in accurately recognizing these symptoms, and ultimately decrease their time delay in seeking emergency medical services (EMS). However, the effectiveness of this approach remains uncertain, particularly among the Chinese population. METHODS: A cross-sectional study was conducted within 22 communities in Beijing, China between 2015 and 2018, with a total of 1099 participants recruited. The study utilized a standardized questionnaire to evaluate the presence of intentional decision delay in turning to EMS under a hypothetical chest pain, the participants' knowledge of ACS prodromal symptoms, and whether they had ever received any training programs aimed at increasing their symptom knowledge. Mediation analysis was performed with regression models and bootstrapping methods, and gender difference was further analyzed through moderated mediation analysis. RESULTS: A total of 1099 participants (58.2% female, median [IQR] age 34 [20]) were included in the study. The results of the mediation analysis indicated that training programs were associated with a decrease risk in decision delay, with increased knowledge playing a mediating role (mediation effect/total effect = 36.59%, P < 0.0001). Gender modified this mediation effect, with it being observed only in the male group. Specifically, training programs were not found to significantly decrease decision delay among females (P > 0.05), even though they did improve women's knowledge of ACS prodromal symptoms (ß = 0.57, P = 0.012). CONCLUSION: The results suggested a relationship between prior training programs and reduced decision delay, with increased knowledge of prodromal symptoms of ACS serving as a mediator. However, the effect was only observed in male participants and not in female participants. This highlights the notion that mere transfer of knowledge regarding ACS prodromal symptoms may not be sufficient to mitigate decision delay in the female population. Further research is needed to corroborate these results and to gain deeper insights into the gender-specific barriers encountered in this study.


Subject(s)
Acute Coronary Syndrome , Emergency Medical Services , Humans , Male , Female , Adult , Acute Coronary Syndrome/diagnosis , Acute Coronary Syndrome/epidemiology , Cross-Sectional Studies , Prodromal Symptoms , China
7.
United European Gastroenterol J ; 11(8): 750-766, 2023 10.
Article in English | MEDLINE | ID: mdl-37723933

ABSTRACT

BACKGROUND/AIM: Diabetes has substantive co-occurrence with disorders of gut-brain interactions (DGBIs). The pathophysiological and molecular mechanisms linking diabetes and DGBIs are unclear. MicroRNAs (miRNAs) are key regulators of diabetes and gut dysmotility. We investigated whether impaired gut barrier function is regulated by a key miRNA, miR-10b-5p, linking diabetes and gut dysmotility. METHODS: We created a new mouse line using the Mb3Cas12a/Mb3Cpf1 endonuclease to delete mir-10b globally. Loss of function studies in the mir-10b knockout (KO) mice were conducted to characterize diabetes, gut dysmotility, and gut barrier dysfunction phenotypes in these mice. Gain of function studies were conducted by injecting these mir-10b KO mice with a miR-10b-5p mimic. Further, we performed miRNA-sequencing analysis from colonic mucosa from mir-10b KO, wild type, and miR-10b-5p mimic injected mice to confirm (1) deficiency of miR-10b-5p in KO mice, and (2) restoration of miR-10b-5p after the mimic injection. RESULTS: Congenital loss of mir-10b in mice led to the development of hyperglycemia, gut dysmotility, and gut barrier dysfunction. Gut permeability was increased, but expression of the tight junction protein Zonula occludens-1 was reduced in the colon of mir-10b KO mice. Patients with diabetes or constipation- predominant irritable bowel syndrome, a known DGBI that is linked to leaky gut, had significantly reduced miR-10b-5p expression. Injection of a miR-10b-5p mimic in mir-10b KO mice rescued these molecular alterations and phenotypes. CONCLUSIONS: Our study uncovered a potential pathophysiologic mechanism of gut barrier dysfunction that links both the diabetes and gut dysmotility phenotypes in mice lacking miR-10b-5p. Treatment with a miR-10b-5p mimic reversed the leaky gut, diabetic, and gut dysmotility phenotypes, highlighting the translational potential of the miR-10b-5p mimic.


Subject(s)
Diabetes Mellitus , Irritable Bowel Syndrome , MicroRNAs , Humans , Mice , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Phenotype
8.
Small ; 19(45): e2303301, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37423977

ABSTRACT

Flexible electronic sensors show great potential for health monitoring but are usually limited to single sensing functionality. To enrich their functions, complicated device configurations, sophisticated material systems, and preparation processes are typically involved, obstructing their large-scale deployment and widespread application. Herein, to achieve a good balance between simplicity and multifunctionality, a new paradigm of sensor modality for both mechanical sensing and bioelectrical sensing is presented based on a single material system and a simple solution processing approach. The whole multifunctional sensors are constructed with a pair of highly conductive ultrathin electrodes (WPU/MXene-1) and an elastic micro-structured mechanical sensing layer (WPU/MXene-2), with the human skin serving as the substrate for the whole sensors. The resultant sensors show high pressure sensitivity and low skin-electrode interfacial impedance, enabling to synergetically monitor both physiological pressure (e.g., arterial pulse signals) and epidermal bioelectrical signals (including electrocardiograph and electromyography). The universality and extensibility of this methodology to construct multifunctional sensors with different material systems are also verified. This simplified sensor modality with enhanced multifunctionality provides a novel design concept to construct future smart wearables for health monitoring and medical diagnosis.


Subject(s)
Skin , Wearable Electronic Devices , Humans , Epidermis , Electric Conductivity
9.
Int J Mol Sci ; 24(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37446023

ABSTRACT

Heat stress is an increasingly significant abiotic stress factor affecting crop yield and quality. This study aims to uncover the regulatory mechanism of sweet corn response to heat stress by integrating transcriptome and metabolome analyses of seedlings exposed to normal (25 °C) or high temperature (42 °C). The transcriptome results revealed numerous pathways affected by heat stress, especially those related to phenylpropanoid processes and photosynthesis, with 102 and 107 differentially expressed genes (DEGs) identified, respectively, and mostly down-regulated in expression. The metabolome results showed that 12 or 24 h of heat stress significantly affected the abundance of metabolites, with 61 metabolites detected after 12 h and 111 after 24 h, of which 42 metabolites were detected at both time points, including various alkaloids and flavonoids. Scopoletin-7-o-glucoside (scopolin), 3-indolepropionic acid, acetryptine, 5,7-dihydroxy-3',4',5'-trimethoxyflavone, and 5,6,7,4'-tetramethoxyflavanone expression levels were mostly up-regulated. A regulatory network was built by analyzing the correlations between gene modules and metabolites, and four hub genes in sweet corn seedlings under heat stress were identified: RNA-dependent RNA polymerase 2 (RDR2), UDP-glucosyltransferase 73C5 (UGT73C5), LOC103633555, and CTC-interacting domain 7 (CID7). These results provide a foundation for improving sweet corn development through biological intervention or genome-level modulation.


Subject(s)
Transcriptome , Zea mays , Zea mays/metabolism , Seedlings/metabolism , Gene Expression Regulation, Plant , Heat-Shock Response/genetics , Metabolome , Gene Expression Profiling/methods
10.
Research (Wash D C) ; 6: 0172, 2023.
Article in English | MEDLINE | ID: mdl-37333971

ABSTRACT

Natural tactile sensation is complex, which involves not only contact force intensity detection but also the perception of the force direction, the surface texture, and other mechanical parameters. Nevertheless, the vast majority of the developed tactile sensors can only detect the normal force, but usually cannot resolve shear force or even distinguish the directions of the force. Here, we present a new paradigm of bioinspired tactile sensors for resolving both the intensity and the directions of mechanical stimulations via synergistic microcrack-bristle structure design and cross-shaped configuration engineering. The microcrack sensing structure gives high mechanical sensitivity to the tactile sensors, and the synergistic bristle structure further amplifies the sensitivity of the sensors. The cross-shaped configuration engineering of the synergistic microcrack-bristle structure further endows the tactile sensors with good capability to detect and distinguish the directions of the applied mechanical forces. The as-fabricated tactile sensors exhibit a high sensitivity (25.76 N-1), low detection limit (5.4 mN), desirable stability (over 2,500 cycles), and good capability to resolve both mechanical intensity and directional features. As promising application scenarios, surface texture recognition and biomimetic path explorations are successfully demonstrated with these tactile sensors. This newly proposed tactile sensation strategy and technology have great potential applications in ingenious tactile sensation and construction of various robotic and bionic prostheses with high operational dexterity.

11.
Plant Dis ; 2023 May 25.
Article in English | MEDLINE | ID: mdl-37227437

ABSTRACT

Capsicum chlorosis virus (CaCV; family Tospoviridae, genus Orthotospovirus) was first reported to infect capsicum (Capsicum annuum) and tomato (Solanum lycopersicum) in Australia in 2002 (McMichael et al., 2002). Subsequently, its infection was detected in different plants including waxflower (Hoya calycina Schlecter) in the United States (Melzer et al. 2014), peanut (Arachis hypogaea) in India (Vijayalakshmi et al. 2016), and spider lily (Hymenocallis americana) (Huang et al. 2017), Chilli pepper (Capsicum annuum) (Zheng et al. 2020), and Feiji cao (Chromolaena odorata) (Chen et al. 2022) in China. Ageratum conyzoides L. (commonly known as goat weed, family Asteraceae) is a natural weed in crop fields distributed in subtropical and tropical areas and a reservoir host of numerous plant pathogens (She et al. 2013). In April 2022, we observed that 90% of plants of A. conyzoides in maize fields in Sanya, Hainan province, China, exhibited typical virus-like symptoms of vein yellowing, leaf chlorosis, and distortion (Fig. S1 A-C). Total RNA was extracted from one symptomatic leaf of A. conyzoides. Small RNA libraries were constructed using the small RNA Sample Pre Kit (Illumina, San Diego, USA) for sequencing with an Illumina Novaseq 6000 platform (Biomarker Technologies Corporation, Beijing, China). A total 15,848,189 clean reads were obtained after removing low-quality reads. Quality-controlled qualified reads were assembled into contigs using Velvet 1.0.5 software with a k-mer value of 17. One hundred contigs shared nucleotide identity ranging from 85.7% to 100% with the CaCV using BLASTn searches online (https://blast.ncbi.nlm.nih.gov/Blast.cgi?). Numerous contigs (45, 34, and 21) obtained in this study were mapped to the L, M, and S RNA segments of the CaCV-Hainan isolate (GenBank accession no. KX078565- KX078567) from spider lily (Hymenocallis americana) in Hainan province, China, respectively. The full-length of L, M, and S RNA segments of CaCV-AC were determined to be 8,913, 4,841, and 3,629 bp, respectively (GenBank accession no. OQ597167- OQ597169). Furthermore, five symptomatic leaf samples were tested to be positive for CaCV using a CaCV enzyme-linked immunosorbent assay (ELISA) kit (MEIMIAN, Jiangsu, China) (Fig. S1-D). Total RNA from these leaves was amplified by RT-PCR with two sets of primer pairs. Primers CaCV-F (5'-ACTTTCCATCAACCTCTGT-3') and CaCV-R (5'-GTTATGGCCATATTTCCCT-3') were used for the amplification of 828 bp fragment from nucleocapsid protein (NP) on CaCV S RNA. While another, primers gL3637 (5'-CCTTTAACAGTDGAAACAT-3') and gL4435c (5'-CATDGCRCAAGARTGRTARACAGA-3') were used for the amplification of 816 bp fragment from RNA-dependent RNA polymerase (RdRP) on CaCV L RNA (Fig. S1-E and -F) (Basavaraj et al. 2020). These amplicons were cloned into the pCE2 TA/Blunt-Zero vector (Vazyme, Nanjing, China) and three independent positive colonies of Escherichia coli DH5α carrying each viral amplicon were sequenced. These sequences were deposited in the GenBank database under accession nos. OP616700-OP616709. Pairwise sequence comparison revealed that nucleotide sequences of NP and RdRP genes of the five CaCV isolates shared 99.5% (812 bp out of 828 bp) and 99.4% (799 bp out of 816 bp) nucleotide identities, respectively. They showed 86.2-99.2% and 86.5-99.1% nucleotide identities with corresponding nucleotide sequences of other CaCV isolates derived from GenBank database, respectively. The highest nucleotide sequence identity (99%) of the CaCV isolates obtained in the study was observed with the CaCV-Hainan isolate. Phylogenetic analysis based on NP amino acid demonstrated that six CaCV isolates (this study = 5 and NCBI database = 1) clustered into one distinct clade (Fig. S2). Our data confirmed for the first time the presence of CaCV naturally infecting A. conyzoides plant in China, which enriches information on the host range and will be helpful for disease management.

12.
Dev Cell ; 58(9): 779-790.e4, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37023748

ABSTRACT

Reports that mouse sperm gain small RNAs from the epididymosomes secreted by epididymal epithelial cells and that these "foreign" small RNAs act as an epigenetic information carrier mediating the transmission of acquired paternal traits have drawn great attention because the findings suggest that heritable information can flow from soma to germ line, thus invalidating the long-standing Weismann's barrier theory on heritable information flow. Using small RNA sequencing (sRNA-seq), northern blots, sRNA in situ hybridization, and immunofluorescence, we detected substantial changes in the small RNA profile in murine caput epididymal sperm (sperm in the head of the epididymis), and we further determined that the changes resulted from sperm exchanging small RNAs, mainly tsRNAs and rsRNAs, with cytoplasmic droplets rather than the epididymosomes. Moreover, the murine sperm-borne small RNAs were mainly derived from the nuclear small RNAs in late spermatids. Thus, caution is needed regarding sperm gaining foreign small RNAs as an underlying mechanism of epigenetic inheritance.


Subject(s)
Epididymis , MicroRNAs , Male , Mice , Animals , Sperm Maturation/genetics , Semen , Spermatozoa , MicroRNAs/genetics , Spermatids
13.
Sensors (Basel) ; 23(5)2023 Feb 26.
Article in English | MEDLINE | ID: mdl-36904795

ABSTRACT

In this paper, a portable photoacoustic microscopy (PAM) system is proposed based on a large stroke electrothermal micromirror to achieve high resolution and fast imaging. The crucial micromirror in the system realizes a precise and efficient 2-axis control. Two different designs of electrothermal actuators with "O" and "Z" shape are evenly located around the four directions of mirror plate. With a symmetrical structure, the actuator realized single direction drive only. The finite element modelling of both two proposed micromirror has realized a large displacement over 550 µm and the scan angle over ±30.43° at 0-10 V DC excitation. In addition, the steady-state and transient-state response show a high linearity and quick response respectively, which can contribute to a fast and stable imaging. Using the Linescan model, the system achieves an effective imaging area of 1 mm × 3 mm in 14 s and 1 mm × 4 mm in 12 s for the "O" and "Z" types, respectively. The proposed PAM systems have advantages in image resolution and control accuracy, indicating a significant potential in the field of facial angiography.


Subject(s)
Photoacoustic Techniques , Photoacoustic Techniques/methods , Microscopy/methods , Angiography , Spectrum Analysis
14.
Cells ; 12(6)2023 03 16.
Article in English | MEDLINE | ID: mdl-36980262

ABSTRACT

The dual-specificity tyrosine phosphorylation-regulated kinase (DYRK1) phosphorylates diverse substrates involved in various cellular processes. Here, we found that blocking the kinase activity of DYRK1 inhibited notochord development and lumenogenesis in ascidian Ciona savignyi. By performing phosphoproteomics in conjunction with notochord-specific proteomics, we identified 1065 notochord-specific phosphoproteins that were present during lumen inflation, of which 428 differentially phosphorylated proteins (DPPs) were identified after inhibition of DYRK1 kinase activity. These DPPs were significantly enriched in metal ion transmembrane transporter activity, protein transport and localization, and tight junction. We next analyzed the downregulated phosphoproteins and focused on those belonging to the solute carrier (SLC), Ras-related protein (RAB), and tight junction protein (TJP) families. In vivo phospho-deficient study showed that alanine mutations on the phosphosites of these proteins resulted in defects of lumenogenesis during Ciona notochord development, demonstrating the crucial roles of phosphorylation of transmembrane transport-, vesicle trafficking-, and tight junction-related proteins in lumen formation. Overall, our study provides a valuable data resource for investigating notochord lumenogenesis and uncovers the molecular mechanisms of DYRK1-mediated notochord development and lumen inflation.


Subject(s)
Urochordata , Humans , Animals , Phosphorylation , Notochord/metabolism , Intercellular Junctions/metabolism , Ion Transport , Phosphoproteins/metabolism
15.
Open Biol ; 13(3): 220367, 2023 03.
Article in English | MEDLINE | ID: mdl-36918025

ABSTRACT

Lumen development is a crucial phase in tubulogenesis, although its molecular mechanisms are largely unknown. In this study, we discovered an ELMO domain-containing 3 (ELMOD3), which belongs to ADP-ribosylation factor GTPase-activating protein family, was necessary to form the notochord lumen in Ciona larvae. We demonstrated that ELMOD3 interacted with lipid raft protein Flotillin2 and regulated its subcellular localization. The loss-of-function of Flotillin2 prevented notochord lumen formation. Furthermore, we found that ELMOD3 also interacted with Rab1A, which is the regulatory GTPase for vesicle trafficking and located at the notochord cell surface. Rab1A mutations arrested the lumen formation, phenocopying the loss-of-function of ELMOD3 and Flotillin2. Our findings further suggested that Rab1A interactions influenced Flotillin2 localization. We thus identified a unique pathway in which ELMOD3 interacted with Rab1A, which controlled the Flotillin2-mediated vesicle trafficking from cytoplasm to apical membrane, required for Ciona notochord lumen formation.


Subject(s)
Ciona intestinalis , Ciona , Animals , Ciona intestinalis/genetics , Ciona intestinalis/metabolism , Notochord/metabolism , Cell Membrane , Cytoplasm
16.
Proteomics ; 23(10): e2200460, 2023 05.
Article in English | MEDLINE | ID: mdl-36772928

ABSTRACT

Lumen formation and inflation are crucial steps for tubular organ morphogenesis, yet the underling mechanism remains largely unrevealed. Here, we applied 4D proteomics to screen the lumenogenesis-related proteins and revealed the biological pathways potentially that are involved in lumen inflation during notochord lumen formation in the ascidian Ciona savignyi. In total, 910 differentiated expressed proteins (DEPs) were identified before and after notochord lumen formation utilizing Mfuzz analysis. Those DEPs were grouped into four upregulated clusters based on their quantitative expression patterns; the functions of these proteins were enriched in protein metabolic and biosynthetic process, the establishment of localization, and vesicle-mediated transport. We analyzed the vesicle trafficking cluster and focused on several vesicle transport hub proteins. In vivo function-deficient experiments showed that mutation of vesicle transport proteins resulted in an abnormal lumen in notochord development, demonstrating the crucial role of intracellular trafficking for lumen formation. Moreover, abundant extracellular matrix proteins were identified, the majority of which were predicted to be glycosylated proteins. Inhibition of glycosylation markedly reduced the lumen expansion rate in notochord cells, suggesting that protein glycosylation is essential for lumenogenesis. Overall, our study provides an invaluable resource and reveals the crucial mechanisms in lumen formation and expansion.


Subject(s)
Ciona intestinalis , Ciona , Animals , Ciona/genetics , Ciona intestinalis/genetics , Glycosylation , Notochord/metabolism , Proteomics , Gene Expression Regulation, Developmental
17.
Biomolecules ; 13(2)2023 02 02.
Article in English | MEDLINE | ID: mdl-36830653

ABSTRACT

Dual-specificity tyrosine-(Y)-phosphorylation-regulated kinase 1 (DYRK1) encodes a conserved protein kinase that is indispensable to neuron development. However, whether DYRK1 possesses additional functions apart from kinase function remains poorly understood. In this study, we firstly demonstrated that the C-terminal of ascidian Ciona robusta DYRK1 (CrDYRK1) showed transcriptional activation activity independent of its kinase function. The transcriptional activation activity of CrDYRK1 could be autoinhibited by a repression domain in the N-terminal. More excitingly, both activation and repression domains were retained in HsDYRK1A in humans. The genes, activated by the activation domain of HsDYRK1A, are mainly involved in ion transport and neuroactive ligand-receptor interaction. We further found that numerous mutation sites relevant to the DYRK1A-related intellectual disability syndrome locate in the C-terminal of HsDYRK1A. Then, we identified several specific DNA motifs in the transcriptional regulation region of those activated genes. Taken together, we identified a conserved transcription activation domain in DYRK1 in urochordates and vertebrates. The activation is independent of the kinase activity of DYRK1 and can be repressed by its own N-terminal. Transcriptome and mutation data indicate that the transcriptional activation ability of HsDYRK1A is potentially involved in synaptic transmission and neuronal function related to the intellectual disability syndrome.


Subject(s)
Intellectual Disability , Protein Serine-Threonine Kinases , Animals , Humans , Phosphorylation , Transcriptional Activation , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Tyrosine/metabolism
18.
J Environ Sci (China) ; 127: 308-319, 2023 May.
Article in English | MEDLINE | ID: mdl-36522063

ABSTRACT

Given the high abundance of water in the atmosphere, the reaction of Criegee intermediates (CIs) with (H2O)2 is considered to be the predominant removal pathway for CIs. However, recent experimental findings reported that the reactions of CIs with organic acids and carbonyls are faster than expected. At the same time, the interface behavior between CIs and carbonyls has not been reported so far. Here, the gas-phase and air-water interface behavior between Criegee intermediates and HCHO were explored by adopting high-level quantum chemical calculations and Born-Oppenheimer molecular dynamics (BOMD) simulations. Quantum chemical calculations evidence that the gas-phase reactions of CIs + HCHO are submerged energy or low energy barriers processes. The rate ratios speculate that the HCHO could be not only a significant tropospheric scavenger of CIs, but also an inhibitor in the oxidizing ability of CIs on SOx in dry and highly polluted areas with abundant HCHO concentration. The reactions of CH2OO with HCHO at the droplet's surface follow a loop structure mechanism to produce i) SOZ (), ii) BHMP (HOCH2OOCH2OH), and iii) HMHP (HOCH2OOH). Considering the harsh reaction conditions between CIs and HCHO at the interface (i.e., the two molecules must be sufficiently close to each other), the hydration of CIs is still their main atmospheric loss pathway. These results could help us get a better interpretation of the underlying CIs-aldehydes chemical processes in the global polluted urban atmospheres.


Subject(s)
Atmosphere , Water , Water/chemistry , Atmosphere/chemistry , Aldehydes
19.
Luminescence ; 38(1): 12-18, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36225168

ABSTRACT

The chemiluminescence (CL) reaction between ozone and 3,6-dihydroxynaphtha-2,7-disulphonate (DNDS) was found under alkaline conditions. Therefore, a novel CL system for ozone detection was established. The CL signal of the CL system is weak, and the CL signal is enhanced by adding nonionic surfactants. It was found that adding 16.4 g/l Triton X-100 can enhance the CL signal. The CL reagent activated by ultraviolet (UV) light produced a CL signal was nearly 10 times stronger than the CL reagent not activated by UV light; the CL signal was enhanced by adding 8 g/l NaHCO3 to the CL reagent irradiated by UV light. Through the optimization of these test conditions, a high-selectivity, high-sensitivity online detection method for ozone CL was established. The linear range was 0.5-150 ppbv, and the limit of detection (LOD) was 0.092 ppbv (S/N = 3).


Subject(s)
Luminescence , Ozone , Luminescent Measurements/methods , Indicators and Reagents , Limit of Detection
20.
Technol Health Care ; 31(1): 269-281, 2023.
Article in English | MEDLINE | ID: mdl-36031921

ABSTRACT

BACKGROUND: Wearable devices that monitor heart health of cardiac disease patients in real time are in great demand. OBJECTIVE: We propose an algorithm of improved segment periodical matrix construction for irregular electrocardiogram (ECG) signal denoising. METHOD: While splitting the heartbeat based on each RR interval for periodical segments matrix construction, the as-filtered ECG signal is reconstructed by the maximum singular value after a singular value decomposition. RESULTS: The results demonstrate a higher noise reduction effect with lower signal distortions of our methods compared to several singular value decomposition counterpart approaches. CONCLUSION: Our method has great potential to enhance wearable devices diagnosis accuracy by denoising the complex noises such as electromyography artifacts in real-time ECG sensing.


Subject(s)
Signal Processing, Computer-Assisted , Wearable Electronic Devices , Humans , Algorithms , Electrocardiography/methods , Artifacts , Signal-To-Noise Ratio
SELECTION OF CITATIONS
SEARCH DETAIL
...